

EarSleep:

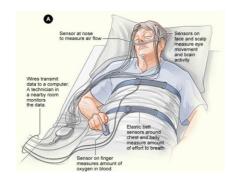
In-ear Acoustic-based Physical and Physiological Activity Recognition for Sleep Stage Detection

Feiyu Han^{1,2}, Panlong Yang², Yanhao Feng³, Weiwei Jiang², Youwei Zhang⁴, and Xiang-Yang Li¹.

[1] University of Science and Technology of China (USTC), China
[2] Nanjing University of Information Science and Technology (NUIST), China
[3] The Hong Kong Polytechnic University (PolyU), China
[4] The University of Electro-Communications (UEC), Japan

Background: Sleep Health Importance

 Sleep-related diseases are considered an under-recognized global public health issue and have become one of the risk factors that seriously threaten public health.



- **50 to 70 million Americans** have some type of sleep disorder^[1].
- Nearly 300 million people in China have poor sleep quality, and 67.24% of them suffer from insomnia symptoms^[2].

[1] https://cfah.org/sleep-statistics/[2] https://pubmed.ncbi.nlm.nih.gov/38429554/

Sleep Monitoring Technology

• Traditional approach

Polysomnography (PSG)

- Fine-grained monitoring in clinical scenarios.
- **Complex** operations and **High** costs

Ubiquitous approaches

Wireless-based

Wearable-based

Mobile-based

- Requiring multi-sensor fusion.
- Only detecting **limited sleep activities**
- Coarse-grained sleep monitoring.
- Wearing discomfort
-

Sleep Earbuds

Earbuds for Sleep: with the expansion of the sleep economy market, sleep earbuds market is valued at approximately \$15 million in 2020

			Bose 遮噪睡眠耳塞 II			
		. Company	^{建议零售价} ¥1,999.00			
			□ 在线购买			
AMAZFIT		amazfit ZenBuds 助眠耳塞华米科技				
	Amazfit ZenBuds	降噪耳机入耳式蓝牙侧睡不压耳				
	REAR OF ALL YOUR MAKE LET VERILE	and any second				

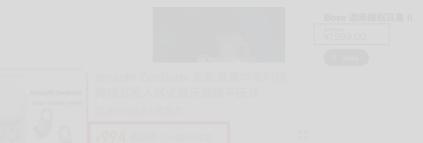
Advantages:

- a) Wearing comfort for users:
 - Ergonomic shape design, soft silicone material.
- b) Noise isolation:
 - Providing a quiet sleep environment.
- c) Ideal positions for measuring physiological parameters.

Becoming the most popular sleep aid tools

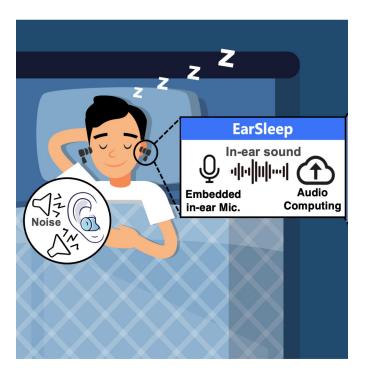
 Relying on dedicated biosensors (PPG, ECG), making the cost expensive (above 100 \$)

Sleep Earbuds


Earbuds for Sleep: with the expansion of the sleep economy market, sleep earbuds market is valued at approximately \$15 million in 2020

Advantages:

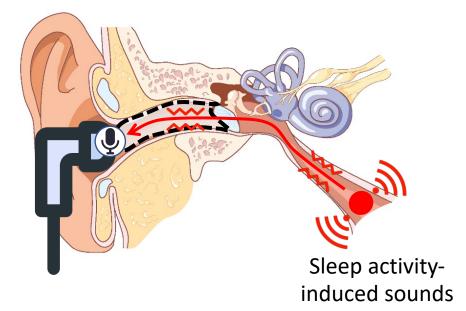
Recognizing a wide range of sleep activities and achieving fine-grained sleep monitoring in the ubiquitous way


Ideal positions for measuring physiological parameters.

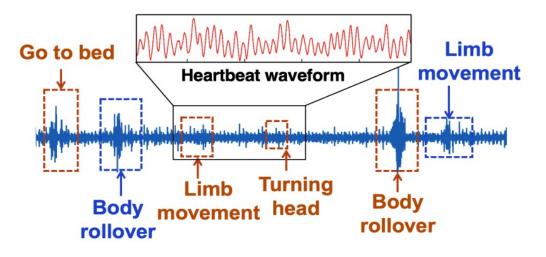
Becoming the most popular sleep aid tools

Relying on dedicated biosensors (PPG,
 ECG), making the cost expensive (above 100 \$)

Our Solution: EarSleep

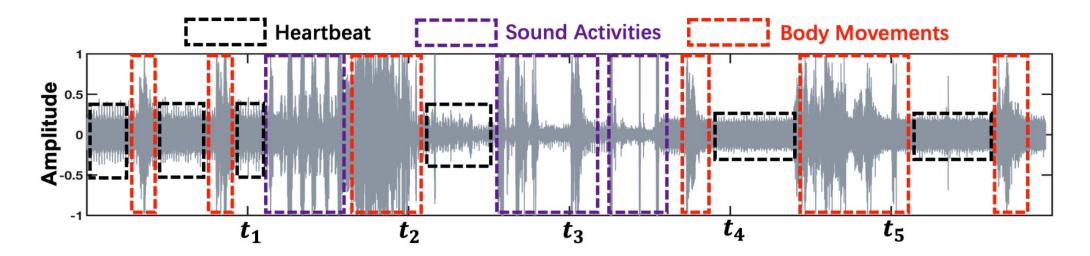

What can EarSleep do!					
Physical	Body movement	Turning head, body trembling, limb movement, and body rollover.			
Activity	Sound activity	Snore, cough, and somniloquy			
Physiological activity		Respiration and heartbeat			
SI	eep stage	Light, deep, and REM			

- EarSleep is built on a pair of **sleep earbuds** with **in-ear microphones**.
- EarSleep can achieve **physical activity recognition** (four-class body movements and three-class sound activities), **physiological activity estimation** (heartbeat and breathing), and **sleep stage detection**.


Sensing Principle

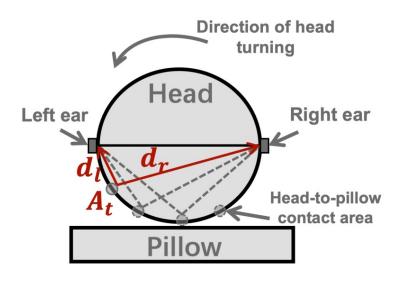
 Body sounds induced by sleep activities propagate through bone conduction to the ear canal and can be captured by the in-ear microphone.

(1) In-ear audio signals generation and propagation



(2) In-ear audio signals captured by in-ear Mic.

Technical Challenge-1


• How to accurately recognize diverse physical activities during sleep with only a single audio modality?

Sleep is a **continuous and long-term** process and various physical activities that have **behavioral patterns** such as intensity, duration, and periodicity occur.

Unique Acoustic Analysis

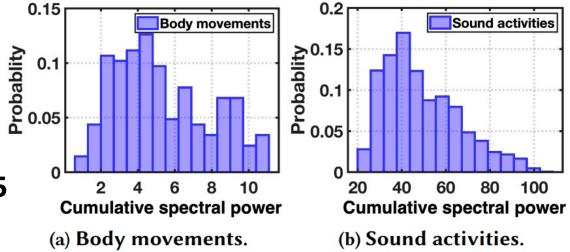
Taking an example of turning head

A single channel modeling

$$S_{in}(t,f) = H_{oe}(Vib(t,f) * e^{-(\alpha_r(f) + \alpha_s(f) + \alpha_a(f))*d})$$

Left/right channel joint modeling

$$\frac{S_{inR}(t,f)}{S_{inL}(t,f)} = \frac{H_{oeR}(Vib(t,f) * e^{-(\alpha_r(f) + \alpha_s(f) + \alpha_a(f)) * d_R}}{H_{oeL}(Vib(t,f) * e^{-(\alpha_r(f) + \alpha_s(f) + \alpha_a(f)) * d_L}}$$
$$\approx H * e^{(\alpha_r(f) + \alpha_s(f) + \alpha_a(f)) * (d_L - d_R)}$$

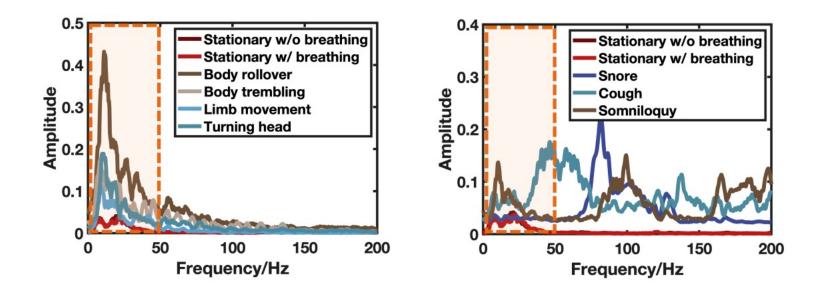

Since the **physical mechanisms** of activities are different, **acoustic attenuation** and **spectral distribution** of physical sleep activities are also distinct, which can inspire us to recognize various physical activities based on a single acoustic modality.

Physical Activity Recognition

(1) Event Type Identification:

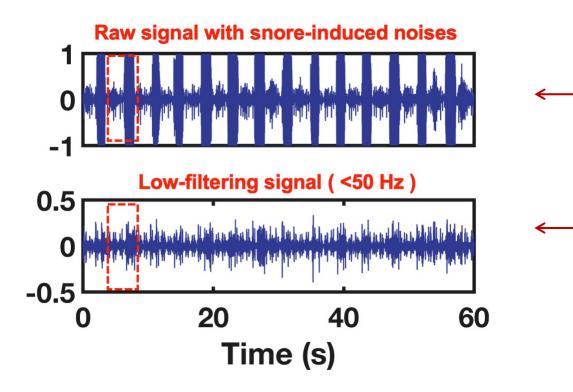
Is Body Movement or Sound Activity?

Threshold of cumulative spectral power: 15



Physical Sleep Activity

Body movement	 Durations Zero-crossing rate Delay profiling Energy Distribution pattern 	Turning head, body trembling, limb movement, and body rollover.		
Sound activity	AutocorrelationSpectral peaksEnergy distribution	Snore, cough, and somniloquy		

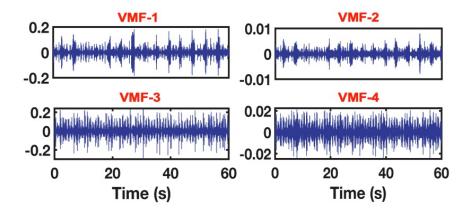

Technical Challenge-2

• How to obtain accurate physiological activity estimation in the presence of motion artifacts?

Heartbeat-induced and breathing-induced sounds are heavily disrupted by motion artifacts.

• Case: raw audio signal with snore noises

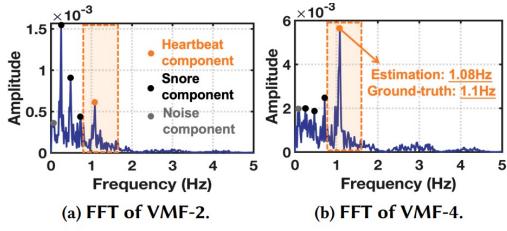
The snoring event overwhelm the original heartbeat waveform


The residual noise still interferes with the original heartbeat waveform

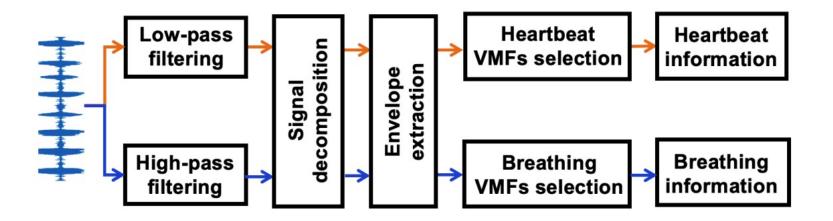
Physiological Activity Estimation

• Signal Decomposition.

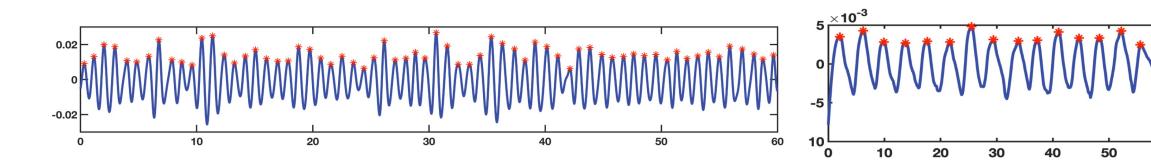
Decomposing the noisy signal into multiple sub-band signals via Variational Mode Decomposition (VMD)


$$E_r(k) = \frac{\left|\sum_{i=1}^k vmf_i\right|^2}{|x|^2} \quad k = 2, 3, 4, 5, 6.$$

• Optimal VMF Selection based on HNR and PNR.

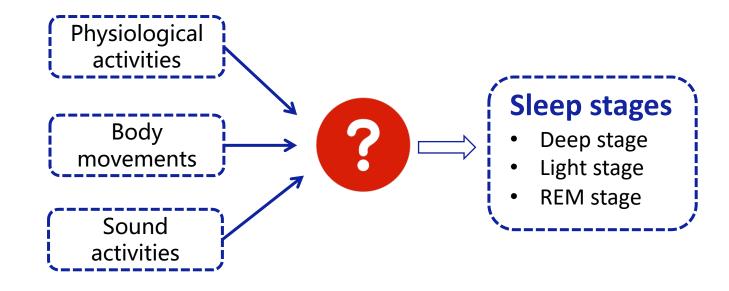

Heartbeat-to-noise Ratio (HNR) and Periodicity-to-noise Ratio (PNR): measuring the the contribution of heartbeat components.

$$HNR = \frac{\sum H}{\sum \{A(i)|0 < f(i) <= 3\}}$$
$$PNR = \frac{\sum \{P(i)|P(i) > \mu * P_{max}\}}{\sum H}.$$



Physiological Activity Estimation

Chart flow of physiological activity estimation.


Extracted heartbeat waveform (left) and respiration waveform (right).

60

Technical Challenge-3

• How to associate various sleep events with sleep stages via representative and interpretable acoustic features?

Sleep-related Acoustic Features Extraction

Extracting acoustic features from detected sleep activities under the guidance of sleep medicine knowledge

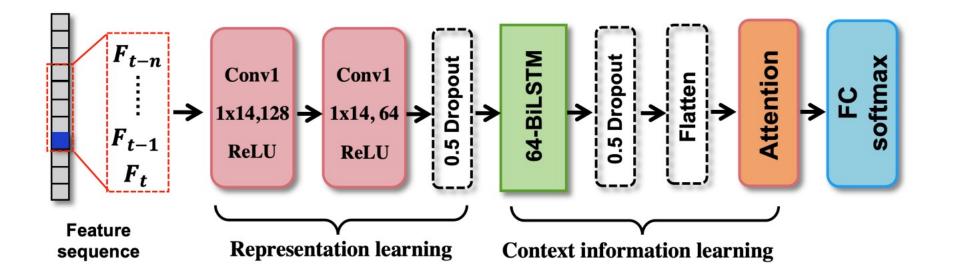
Sleep stage	Characteristics of sleep events			
Light sleep	Large body movements such as body rollover happen.			
Light sleep	Heartbeat and breathing rates start to slow down.			
	Heartbeat, breathing, and body movements become less frequent.			
Deep sleep	Light body movements such as limb and head movement happen.			
	The body is completely relaxed and snoring occurs.			
	Heartbeat and breathing become more frequent and show long-range			
REM sleep	correlations. Body movements are concentrated to occur. Some sound			
	activities such as somniloquy and coughing, occur with dreams.			

Variation patterns of sleep events in different sleep stages

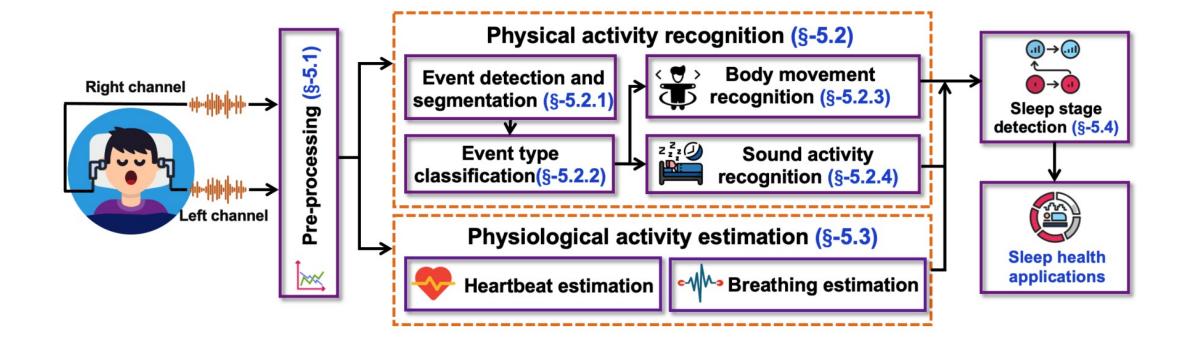
(i) Actigraphy Features:

- Occurrence frequency
- Amplitude ratio

(ii) Sound Activity Features:

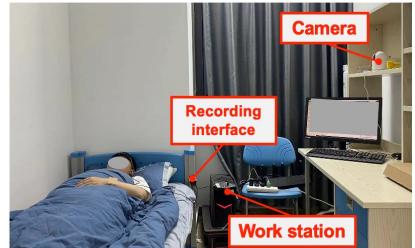

- Occurrence frequency
- Duration ratio

(iii) Physiological Activity Features:

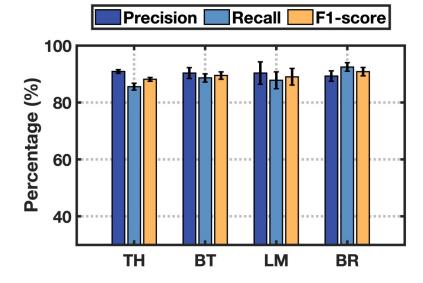

- Waveform Statistical Features.
- Long-time Self-correlation Features.
- Long-time cross-correlation Features.

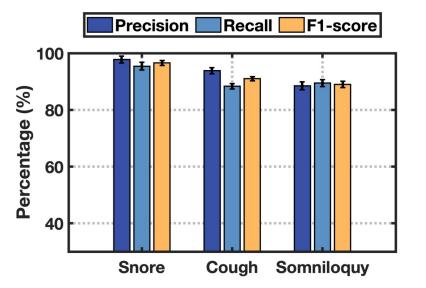
Attention-based Sleep Stage Detection

There are predictable transition patterns between different sleep states, such as light sleep → deep sleep → light sleep → REM, and there is context dependency between different sleep states.


System Overview of EarSleep

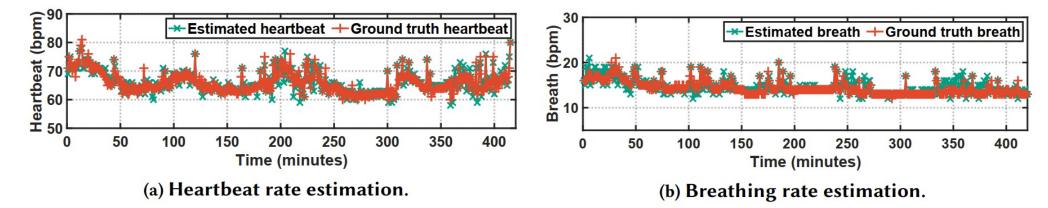
More technical details can be found in our paper.


Experimental Setup

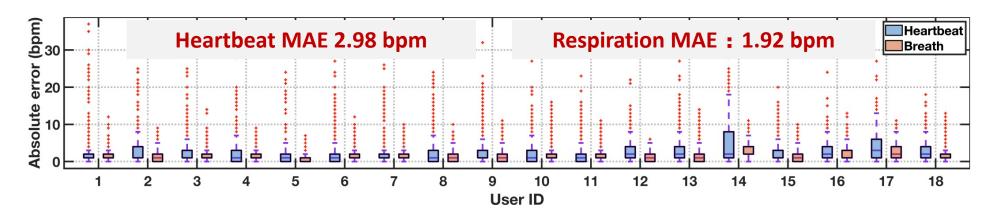


- **18 participants** (12 men and 6 women, 21 to 32 years old) are involved in our evaluation and all participants do not suffer from severe diseases.
- Each participant sleeps about 6-8 hours per night during his/her normal sleep schedule. Each participant contributes 2-3 nocturnal sleep data. In total, we collect sleep audio data for 48 nights.

Evaluation of Physical Activity Recognition



Four-class body movement recognition accuracy of **91.25%**


Three-class sound activity recognition accuracy of **97.05%**

• Evaluation of Physiological Activity Estimation

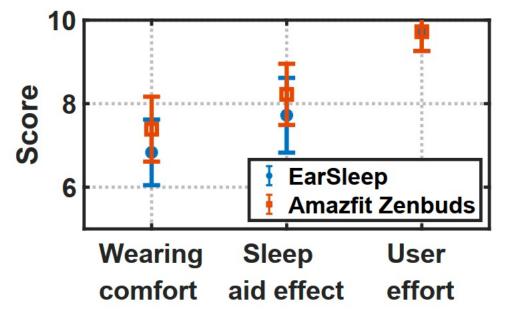
a) Continuous measurement throughout the night of a participant.

b) Continuous measurement among all participants, including 48 nights.

Evaluation of Sleep Stage Detection

An EEG-based sleep monitoring device provides the ground truth of sleep stage.

	REM sleep			Light sleep		Deep sleep			
	Precision	Recall	F1-score	Precision	Recall	F1-score	Precision	Recall	F1-score
Sleep Hunter	60.91%	57.66%	59.24%	54.12%	50.23%	52.10%	49.48%	45.78%	47.56%
SleepGuard	67.79%	64.27%	65.98%	60.78%	56.42%	58.52%	62.84%	56.32%	59.40%
EarSleep	74.21%	77.37%	75.76%	72.39%	65.32%	68.67%	66.17%	62.29%	64.17%


• SleepGuard [Ubicomp'17], Sleep Hunter [TMC'15]

• Outperforming with Existing Solutions:

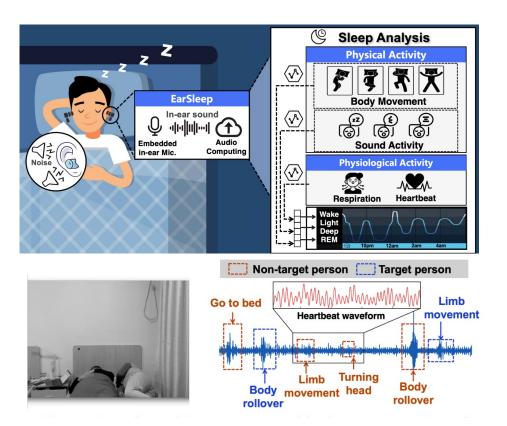
EarSleep can not only capture the variations in coarse-grained physical activities, but also accurately detect variations in fine-grained physiological activities (breathing and heartbeat).

User Experience Study

Users are required to complete a post-study survey with a 10-point Likert scale (from one to ten) after waking up every day

Amazfit Zenbuds: commercial sleep earbuds

Adopt the softer silicone material and the earbud shape design to improve wearing comfort.


Conclusion

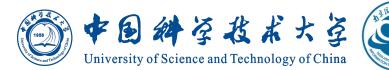
- a) In-ear acoustic-based sleep monitoring approach
- b) Two low-cost microphones on sleep earbuds
- c) Recognize a wide range of sleep activities
 - Heartbeat and respiration
 - Three types of sound activities
 - Four types of body movements
 - Three types of sleep stages

d) Discussion:

....

- individual Difference
- usage in multi-person scenarios
- ambient noise

Video: <u>https://www.youtube.com/watch?v=23Mplv_BaVc</u>


Thanks for your listening

EarSleep:

In-ear Acoustic-based Physical and Physiological Activity Recognition for Sleep Stage Detection

Feiyu Han^{1,2}, Panlong Yang², Yanhao Feng³, Weiwei Jiang², Youwei Zhang⁴, and Xiang-Yang Li¹.

Email: fyhan@mail.ustc.edu.cn Personal website: https://fyhancs.github.io/

