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® Voice Input on Earphone Slides

The quality of recorded speech on earphones drops extremely in noisy
environments, negatively impacting the user experience.



Speech Enhancement Technology Toward Earphones

Spectral subtraction,
filtering, decomposition,
DL-based denoising
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Meets the single-earphone usage scenario and has low
requirements for onboard sensor performance




Opportunity

® Dual-microphone structure ® Two sound propagation channels
In-ear Mic. Outer Mic.
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Airborne Speech vs. In-ear Speech

® Noise Resistance Study

Airborne speech Airborne speech Airborne speech
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Time (s) Time (s) Time (s)
(a) Noise SPL is 30.45 dB. (b) Noise SPL is 52.25 dB. (c) Noise SPL is 61.96 dB.

a) Air-channel ambient noise has subtle impact on in-ear speech that propagating the body
channel.
b) The ear canals fit well with earplugs, blocking noise from entering the ear canal.



Airborne Speech vs. In-ear Speech

® Speech Intelligibility
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Noisy airborne speech

Noise resistance Lowl Intelligibility Highf

Outer Mic. @ W
In-ear Mic. @ M#M m%*m EarSpeech Enhanced airborne speech

Noise resistance HighT Intelligibility Lowl
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Less noisy in-ear speech

Utilizing as the supplemental modality to enhance the
quality of airborne speech in noisy environments



Technical Challenge-1

® A sufficient dataset of paired airborne and in-ear speech with
labels is still lacking.

Airborne speech dataset Large-scale

v’ LibriSpeech (292 000 utterances, 2000+ speakers)

v" LibriVox (180 000 utterances, 9000+ speakers)

v VoxCeleb 1&2 (1 000 000+ utterances, 7000speakers)

In-ear speech dataset Small-scale

An intuitive way: manually collect airborne speech samples and corresponding in-
ear speech samples in the lab environment.



EA-based Cross-channel Correlation Analysis

@® Utilizing electro-acoustic (EA) model to conduct cross-channel correlation analysis

Eardrum Ear canal Entrance Ela"i"um lBIocked device
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Transfer Function: a cross-channel
correlation



Measurement of Transfer Function
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Related to the geometry structure of
the ear canal and skulls .




GMM-based Data Augmentation

Cross-channel

: correlation :
I 1 |
| v :
Large-scale airborne Data Paired in-ear
speech samples augmentation speech samples

*

GMM-based Transfer Function Estimation

« Compared with hard mapping, it has higher generalization
Advantages:
« Compared with DL networks, less training samples are required



Examples of Data Augmentation
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(b) synthetic in-ear speech.
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(b) Cumulative distribution.

® The synthetic in-ear speech
has a similar spectral
structure with ground truth



Technical Challenge-2

® The heterogeneity in speech signals caused by diversities (e.g., different channels and

speakers) makes it difficult to extract effective and generalized features from different
speech channels for speech enhancement.

® Diversities

v' Channel difference
v’ Body structure
v" Pronunciation habits



Dual-channel speech enhancement network
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Embedding Decoder Prediction

a) Extracting high-level representations in the same feature space to represent the cross-channel correlation.
b) Fusing dual-channel representations with element-wise skip connections to predict amplitude mask.

c) Enforcing model to learn the information of in-ear channel. Only participating in training process.

d) Convolutional network structure, the total parameters of the model are about 3.8 MB.



Training Methodology

® Dual-channel Noise mixture scheme.

In extremely noisy environments, ambient noise indeed affects in-ear speech. Directly
ignoring the impact of ambient noise on in-ear speech decreases the robustness of our

system in the real world.
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Field study: the linear relationship
between in-ear noise and ambient noise

(1)Fitting a linear function between in-ear
noise power and ambient noise power.

(2)Calculating the in-ear power noise
according to ambient noise power.

(3)Simultaneously adding corresponding

noise to in-ear speech.



System Overview of EarSpeech
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6 More technical details can be found in our paper.



Output SI-SDR (dB)

Performance Evaluation

e Experimental Setup

Client-server Mode: Earphones are connected to a Laptop via a 3.5 mm jack adapter

® Overall Performance:

18 participants, divided into 6 groups, leave-one-group-out cross validation.
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Performance Evaluation

® Data Augmentation Effectiveness
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Performance Evaluation

® Generalization Capability ® Real-world Study

a) New sentences.

(a) PESQ (b) STOI (c) SI-SDR Env.1 Env.2 Env.3 Env.4
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Performance Evaluation

® Robustness Study In Real World

(ET1) (ET2) (ET3) (ET4)
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Silicone Silicone Silicone

a) Impact of audio length.

b) Wearing position of earphones.
c) Impact of music playing.

d) Impact of earbud types.

Material

Single Single Double

eomeatny flange flange flange

Wingtips

® Run-time Latency

Platform Pre-processing Inference Total

Laptop GPU 4.79 ms (+ 0.72 ms) 38.39 ms (+ 0.06 ms) 36.51 ms (+ 7.35 ms)
Laptop CPU 7.80 ms (+ 0.78 ms) 1.64 s (£ 0.16 s) 1.71 s (£ 0.13 s)

O Audio Demo and Source Code are available on https://github.com/EarSpeech/earspeech.github.io



1. Onboard Deployment
 OS Audio Interface’s Public Access.
 Lightweight Computing.

2. Music Replayed with a higher volume.

1. Music played from on-earphone speakers with the
normal volume has subtle impact

2. "Speak-to-Chat” mode



Thanks for your listening
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