

EarSpeech:

Exploring In-Ear Occlusion Effect on Earphones for Data-efficient Airborne Speech Enhancement

Feiyu Han^{1,2}, Panlong Yang¹, You Zuo², Fei Shang², Fenglei Xu³, and Xiang-Yang Li².

[1] Nanjing University of Information Science and Technology (NUIST), China
 [2] University of Science and Technology of China (USTC), China
 [3] Suzhou University of Science and Technology (SUST), China

Motivation

• Voice Input on Earphone Slides

The quality of recorded speech on earphones drops extremely in **noisy** environments, negatively impacting the user experience.

Speech Enhancement Technology Toward Earphones

Audio-only

Spectral subtraction, filtering, decomposition, DL-based denoising

• Performance limit

Dual Earphones [Mobisys'21]

Single Earphone [Mobisys'22,TASLP'22]

Distortion in angle of users
IMU with the high
Unable to be applied to sampling rate

single-earphone scenarios • Bone

Multi-modality

Bone-conduction Mic.

Meets the single-earphone usage scenario and has low requirements for onboard sensor performance

Opportunity

• Dual-microphone structure

Two sound propagation channels

Can we take advantage of body channel to enhance the airborne speech?

Airborne Speech vs. In-ear Speech

Noise Resistance Study

- a) Air-channel ambient noise has subtle impact on in-ear speech that propagating the body channel.
- b) The ear canals fit well with earplugs, blocking noise from entering the ear canal.

Airborne Speech vs. In-ear Speech

• Speech Intelligibility

Bone conduction and occlusion effect make the loss of high-frequency components

Airborne

In-ear

Our Solution

Utilizing in-ear speech as the supplemental modality to enhance the quality of airborne speech in noisy environments

Technical Challenge-1

 A sufficient dataset of paired airborne and in-ear speech with labels is still lacking.

Airborne speech dataset Large-scale

- ✓ LibriSpeech (292 000 utterances, 2000+ speakers)
- ✓ LibriVox (180 000 utterances, 9000+ speakers)
- ✓ VoxCeleb 1&2 (1 000 000+ utterances, 7000speakers)

In-ear speech dataset **Small-scale**

An intuitive way: manually collect airborne speech samples and corresponding inear speech samples in the lab environment.

EA-based Cross-channel Correlation Analysis

• Utilizing electro-acoustic (EA) model to conduct cross-channel correlation analysis

Measurement of Transfer Function

Observation: Transfer function varies person from person

$$F_{tf} = \frac{s_{ie}(f)}{s_{air}(f)} = \frac{F_{OE}(f) * H_{bone}(f) * \hat{s}(f)}{H_{air} * \hat{s}(f)}$$

Related to the geometry structure of the ear canal and skulls .

GMM-based Data Augmentation

GMM-based Transfer Function Estimation

Advantages:

- Compared with hard mapping, it has higher generalization
- Compared with DL networks, less training samples are required

Examples of Data Augmentation

 The synthetic in-ear speech has a similar spectral structure with ground truth

Technical Challenge-2

 The heterogeneity in speech signals caused by diversities (e.g., different channels and speakers) makes it difficult to extract effective and generalized features from different speech channels for speech enhancement.

Diversities

.

- ✓ Channel difference
- ✓ Body structure
- ✓ Pronunciation habits

Dual-channel speech enhancement network

- a) Extracting high-level representations in the same feature space to represent the cross-channel correlation.
- b) Fusing dual-channel representations with **element-wise skip connections** to predict amplitude mask.
- c) Enforcing model to learn the information of in-ear channel. Only participating in training process.
- d) Convolutional network structure, the total parameters of the model are about 3.8 MB.

Training Methodology

Dual-channel Noise mixture scheme.

In extremely noisy environments, ambient noise indeed affects in-ear speech. Directly ignoring the impact of ambient noise on in-ear speech decreases the robustness of our system in the real world.

Field study: the linear relationship between in-ear noise and ambient noise

1 Fitting a linear function between in-ear

noise power and ambient noise power.

(2) Calculating the in-ear power noise

according to ambient noise power.

③ Simultaneously adding corresponding

noise to in-ear speech.

System Overview of EarSpeech

More technical details can be found in our paper.

Experimental Setup

Client-server Mode: Earphones are connected to a Laptop via a 3.5 mm jack adapter

• Overall Performance:

18 participants, divided into 6 groups, leave-one-group-out cross validation.

	PESQ			STOI				SI-SDR (dB)				
Method	EN	MN	SN	Avg	EN	MN	SN	Avg	EN	MN	SN	Avg
Noisy speech	2.65	2.25	2.29	2.46	0.84	0.75	0.74	0.79	5.08	5.05	5.09	5.07
Phasen	3.24	3.00	2.91	3.05	0.86	0.85	0.80	0.84	11.05	9.93	9.36	10.11
EarSpeech	3.25	3.06	2.97	3.13	0.91	0.89	0.88	0.90	15.16	12.89	12.73	13.98
-w/o FTB	3.08	2.78	2.70	2.91	0.88	0.85	0.84	0.87	13.80	11.66	10.96	12.55
-w/o SK	3.11	2.87	2.79	2.97	0.89	0.87	0.86	0.88	13.87	11.80	11.31	12.70
-w/o AD	3.16	2.93	2.78	3.01	0.90	0.88	0.86	0.88	14.09	12.16	11.52	12.96
-w/o IC	2.32	2.23	1.98	2.21	0.76	0.76	0.68	0.74	5.93	5.88	3.15	5.24

Data Augmentation Effectiveness

Generalization Capability

a) New sentences.

b) Mandarin language

Real-world Study

Reference	In your high school, most of the teachers there are helpful and friendly.				
Noisy speech	In miao miao high school, most of the teachers they are here for are friends.				
Enhanced speech	In your high school, the post of the teachers they are helpful and friendly.				

Robustness Study In Real World

- a) Impact of audio length.
- b) Wearing position of earphones.
- c) Impact of music playing.
- d) Impact of earbud types.
- e)

	(ET 1)	(ET 2)	(ET 3)	(ET 4)	
Material	Memory foam	Silicone	Silicone	Silicone	
Geometry	Single flange	Single flange	Double flange	Wingtips	

Run-time Latency

Platform	Pre-processing	Inference	Total
Laptop GPU	4.79 ms (± 0.72 ms)	38.39 ms (± 0.06 ms)	36.51 ms (± 7.35 ms)
Laptop CPU	7.80 ms (± 0.78 ms)	1.64 s (± 0.16 s)	$1.71 \text{ s} (\pm 0.13 \text{ s})$

Audio Demo and Source Code are available on https://github.com/EarSpeech/earspeech.github.io

Discussion

1. Onboard Deployment

- OS Audio Interface's Public Access.
- Lightweight Computing.

2. Music Replayed with a higher volume.

1. Music played from on-earphone speakers with the

normal volume has subtle impact

2. "Speak-to-Chat" mode

• • • • • •

Thanks for your listening

EarSpeech:

Exploring In-Ear Occlusion Effect on Earphones for Data-efficient Airborne Speech Enhancement

Feiyu Han^{1,2}, Panlong Yang¹, You Zuo², Fei Shang², Fenglei Xu³, and Xiang-Yang Li².

[1] Nanjing University of Information Science and Technology (NUIST), China
 [2] University of Science and Technology of China (USTC), China
 [3] Suzhou University of Science and Technology (SUST), China

Email: fyhan@mail.ustc.edu.cn Personal website: https://fyhancs.github.io/